Investeren in de toekomst van een Europese zonne-energie maakindustrie

Om de Europese concurrentiekracht op lange termijn te waarborgen, stelt Mario Draghi in zijn recente rapport *The Future of European Competitiveness* dat een eigen maakindustrie voor essentiële energietechnologieën onmisbaar is. Dit gaat om kritieke technologieën die voor de energietransitie van strategisch belang zijn. Hiervoor wil Europa niet afhankelijk zijn van andere werelddelen. Maar om een maakindustrie op te bouwen voor duurzame energietechnologieën zoals zonnepanelen en batterijen, zijn forse investeringen nodig. Het Europese doel is om ten minste 40 procent van de benodigde technologieën binnen de Europese grenzen te produceren, met een resterende 60 procent ruimte voor import uit andere werelddelen, zoals Azië. Dit stelt Europa voor de uitdaging om zijn productiecapaciteit op te schalen, en daarvoor kapitaal te mobiliseren.

Uitdagingen voor opschaling en innovatie

De komende jaren zullen in het teken staan van het mobiliseren van investeringskapitaal voor deze transitie. Dit is geen geringe opgave. Ten eerste moet Europa een antwoord vinden op de vraag hoe het de opschaling van eigen productie efficiënt kan financieren, terwijl Europese productie momenteel duurder is dan bijvoorbeeld Aziatische import. Dit betekent dat de periode waarin de Europese industrie op gang komt en zichzelf moet bewijzen, slim gefinancierd moet worden om het kostennadeel van Europese productie te overbruggen. Ten tweede ligt de focus op het opschalen van toekomstgerichte technologieën. Het investeren in de bewezen technologieën van vandaag zal Europa lastiger een competitief voordeel brengen; we moeten inzetten op de technologie van morgen. Dit vraagt om innovatief financieringsbeleid dat risico's op technologische ontwikkeling kan afdekken. De derde uitdaging ligt in het kennisniveau. Terwijl Europa in eerdere decennia een leidende positie had in de maakindustrie, is de kennis inmiddels grotendeels naar Azië verschoven, vooral op productiegebied. Dit betekent dat Europa enerzijds strategisch onafhankelijk wil worden, maar ook moet blijven samenwerken met landen zoals China om concurrerend te blijven.

De rol van overheid en strategische investeringen

Naast investeringskapitaal spelen andere factoren een cruciale rol in de ontwikkeling van de Europese maakindustrie voor zonne-energie, zoals de kosten van arbeid, energieprijzen en toegang tot kritieke grondstoffen. Overheidsfinanciering is hier van groot belang, omdat deze als hefboom kan werken om ook private investeringen aan te trekken. Via blended finance, waarbij publieke en private middelen worden gecombineerd, kan het kapitaal zo effectief mogelijk worden ingezet. Het rapport *Solar panel manufacturing cost comparison* van Roland Berger laat zien dat voor de gehele Europese Unie publiek bedrag van 27 miljard euro nodig is om de "oncompetitieve" periode te overbruggen. Dit bedrag zou een veelvoud aan private middelen kunnen mobiliseren, zeker wanneer het gepaard gaat met stimulerende instrumenten die het prijsonderscheid met Aziatische producten dempen. Vanuit de Nederlandse groeifondsaanvraag kan economische groei worden bereikt in machinebouw, zonnepaneel productie opschaling en de innovatie infrastructuur daaromheen.

Een gezamenlijke Europese aanpak

De opbouw van deze industrie vraagt ook om een strategische en tijdige start. Europa moet op het juiste moment klaarstaan met nieuwe technologieën om een voorsprong te nemen. Met BatteryNL en SolarNL heeft Nederland een goede uitgangspositie om zich ook binnen Europa sterk te positioneren. Maar de waardeketens van zonne-energie en batterijproductie zijn groter dan Nederland alleen; Europese samenwerking met landen als Frankrijk, Spanje, Italië en Duitsland is noodzakelijk om een robuust ecosysteem voor innovatieve technologieën te creëren.

Betaalbare batterijen en zonnepanelen zijn essentieel voor het behalen van de Europese CO₂-reductiedoelen, en daarom kunnen importheffingen averechts werken.

Slim concurreren én samenwerken

Het oplossen van de drie uitdagingen uit het rapport vormen de uitdaging van de Europese maakindustrie. (i) het kostennadeel is fundamenteel in arbeid, grondstoffen en energieprijs. Door arbeid in de nieuwe maakindustrie productiever te maken, kan Europa een competitief voordeel ontwikkelen in de productie en circulaire economie. Door te focussen op arbeids- en grondstof-besparende innovatie, kan Europa een competitief voordeel ontwikkelen in de productie en circulaire economie. Elektrificatie van het energiesysteem vormt in potentie een positieve feedbackloop. Door te investeren in flexibiliteit en slimme benutting van het elektriciteitsnet, kan Europa in potentie duurzame èn competitieve elektriciteit produceren. (ii) Toekomstgericht investeren en opschalen moet tegelijkertijd plaatsvinden. (iii) Innovaties in de maakindustrie richten zich op materiaalgebruik, introductie van nieuwe materialen, circulariteit en nieuwe productiemethodes.

Het Draghi rapport benadrukt dat klimaatactie en economische groei elkaar juist kunnen versterken. Zo zorgen we ervoor dat groene groei werkelijkheid wordt voor Nederland en Europa.

Solar panel manufacturing cost comparison

A comparison between China, Europe and the US

Amsterdam, October 2024

Roland Berger

Contents	A. Executive summary	INVESTAL tipsector energie
This document shall be treated as confidential. It has been compiled for the	B. Cost comparison of solar panel manufacturing	8
exclusive internal use by our client and is not complete without the underlying	C. Cumulative cost gap	14
detailed analyses and the oral presentation. It must not be passed on and/or must not be made available to	D. Minimal efficiency capacity	23
third parties without prior written consent from Roland Berger.	E. Potential policy measures	29
© Roland Berger	F. Value chain impact	33
	G. Key takeaways	37
	Appendix	
	I. Cost split of solar panel manufacturing	40
	II. Overview of policy measures	46
	III. US Tax credits (IRA)	54

A. Executive summary

This analysis determines the cost gap between solar panels manufactured in China, the EU, and the US, and provides an overview of policy measures

Background and approach of the project

Background

- With the Net Zero Industry Act (NZIA) the European commission aims to manufacture 40^{%1} of the equipment required to reach the European climate targets within Europe by 2030
- Currently, the vast majority of solar panels are being manufactured in China where production is cheap due to among others the low cost of utilities and labor
- Bringing (a share of) solar panel manufacturing to Europe implies overcoming the cost gap associated with manufacturing in Europe (price premium), doing so would strengthen European strategic autonomy and capitalize on current knowledge position

Project approach

The aim of the project is to determine the difference between the production cost and market price (price premium) of solar panels in China, the EU and the US and provide an overview of what policy measures could be used to overcome the cost gap. To solve this question the project assesses:

- **1**. High-level cost comparison of solar-PV manufacturing
- 2. Policy options to overcome the European cost gap
- 3. Value chain impact

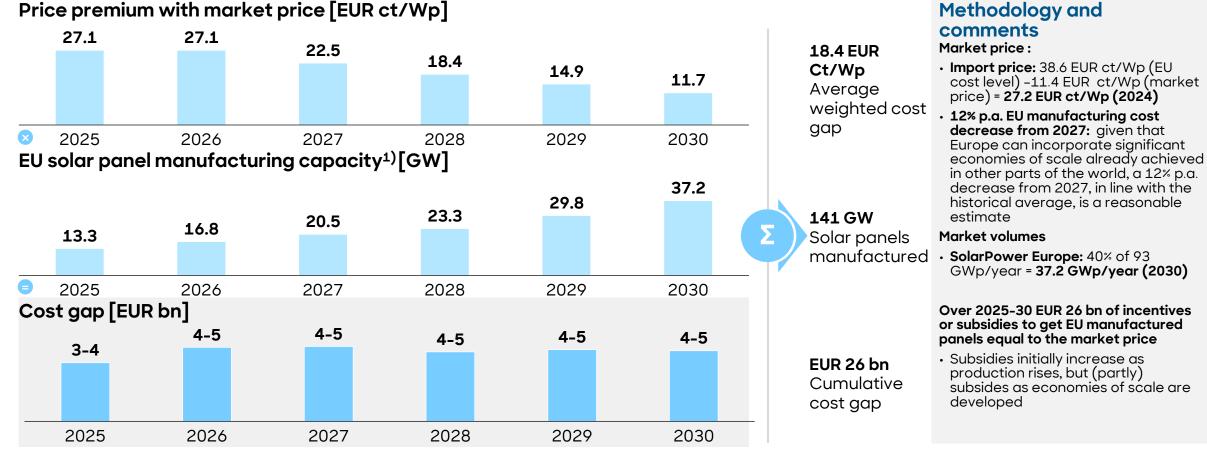
The EU needs to act now and instate policies that overcome a EUR 12-27 bn cumulative cost gap, to establish a solar panel value chain in line with the NZIA

Executive summary (1/3) – Key messages

Completely manufacturing solar panels in Europe comes at a price premium of 20-25 EUR ct/Wp compared to manufacturing in China

NZIA requires an EU solar manufacturing capacity of 22-37 GWp (40% of 56-93 GWp annual additions) which, requires overcoming a cumulative cost gap of EUR 12-27 bn

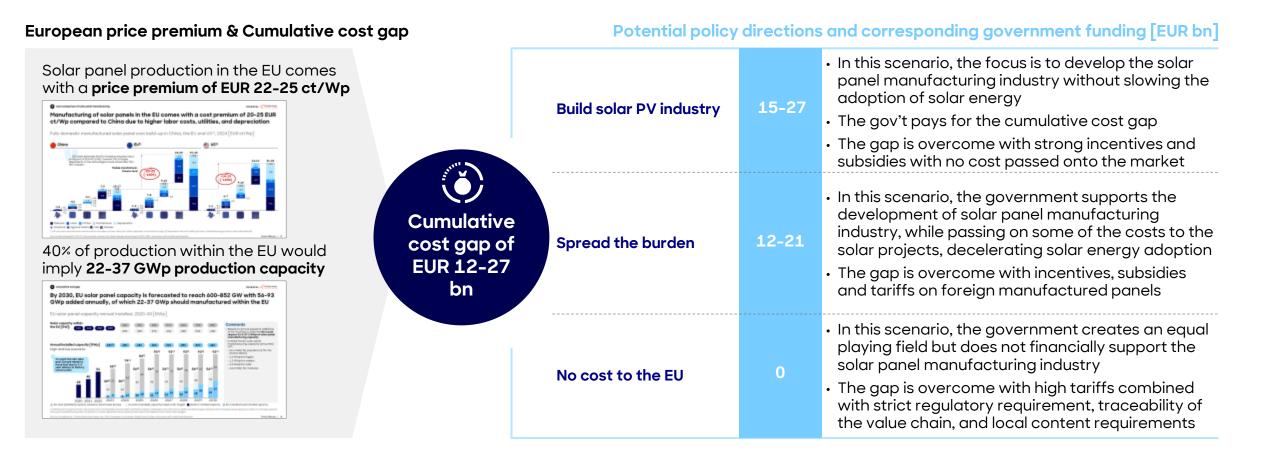
At least 20-25 GWp EU manufacturing capacity is required to achieve economies of scale, this is in line with the 22-37 GWp needed for the NZIA and unlocks EUR 8-35¹⁾ bn of investments withing Europe


A decision needs to be made on a policy direction to support the solar panel manufacturing industry and selecting a direction is urgent as 2-3 years are required to start-up new manufacturing capacity

Increasing EU solar panel manufacturing will positively impact various stages of the value chain, from machinery manufacturing to technological innovation

The cumulative cost gap has been determined based on a declining price premium as a result of innovation, scaling, and the EU solar power forecast

Executive summary (2/3) - Calculation of the cumulative cost gap



1) Share of EU manufacturing capacity is based on average capacity among the processing steps

Source: BloombergNEF, ETIP PV, Het Financieele Dagblad, iea, MCPV, Meyer Burger annual report, NREL, Our World in Data, Interview with market participants

The EU government funding required to establish a European solar panel supply chain amount to EUR 0-27 bn depending on the policy direction

Executive summary (3/3) - Potential policy directions

Roland Berger | 7

B. Cost comparison of solar panel manufacturing

The manufacturing cost of solar panels in the EU and US have been determined by multiplying each cost item relative to manufacturing cost in China

Methodology to determine the cost premium of solar panel manufacturing outside China

Determine cost level and split

Recent studies estimate the n manufactured in China at 15.0			
Methodology to determine cost per cost	item		
Methodology	Cost splits of various sour	ces, 2022 & 2024 [EUR ct	/Wp]
Bounces from the NREA, ETC (74 ²), and lea ² have been analyzed and used as reference to create a best-effort and affi	tectional tenewable time galadisectory.	manufactionsphanes, INE	The purspect Technology-Intervention Platform for the 2009
The NEU ¹ on-lieo ¹⁷ sources show a similar cost distribution per cost item within the manufacturing slaps, with indentials always being the largest and item, followed by riskor and utilises	27 82	48	Boarcoach Blaisgeart Blain 32
The ETP P/M pource is used on reference for the split behaviors of the ont-monothruling stopes and shown each consequential stop to be note expensive than the previous one, with the monotole stop theorem being significantly more costly. They previous steps/binery clue to costs of odder moterinal.			
A combination of the three sources, together with the measurement solar powel component prices (MIE), ¹¹ , 2024), has been used to cheate childetic and as sociariote is possible cost split.	0+s		Creater Creater
Ray marked players were econatived who collationate the finding in this mapont, these includes DMA – Remarked and the second second second second second resoration and the second second second second memory. Topperator amongle – Program memory, MCPV – Noord memory, Topperator amongle – Program memory, MCPV Mocher – Devendance detector	Frankish Patrianana Latar Elarið Dena Elariðarianaðari	Francis Receipton Liter Directoristics Director	Robysteen in Sad Robysteen Robes Robe

cost item multipliers

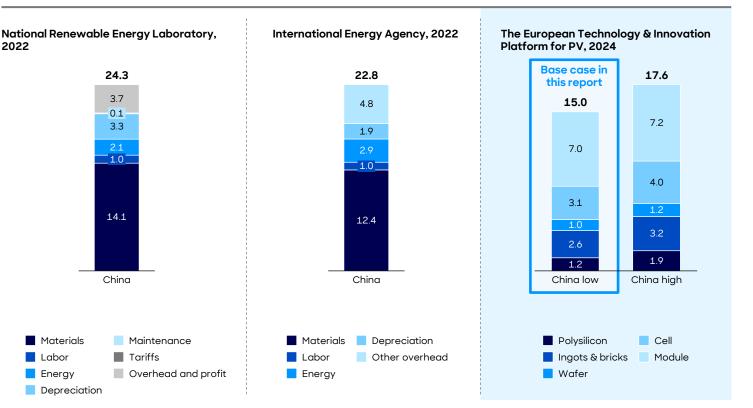
Differe	O tott comparison of oder panel menufacturing					weather Alterna		
tem, u					to EU would increase labor by a facto other cost items by factors of 1.3-2.3			
warink		nufacturing co	st and EU cost multip		-			
	Costitem	Chinese rulg/1 cost [EUR of/Wp]	Cost item description	EV cost reultiplier [-]	Exploration	Reading guide		
Adjustices Relystices	Materials ²	7.4	 Instalated roots of endinguised for the (root) materials and to produce the final product is p situation, glass, startmart etc. 	romro	Posterials are changer in Orien due to peakerly, and cheaper later and mergy costs to the mining rotation	 Par sould have (porrelative encode the arctire colum shale), a sould split in set per work-peak within Chinese side (porrel 		
Cell Hodule	Labor ⁴⁰	1.4	· Instalmost satelycard offer employer cost: for personner	2.0 1000 28.2	 Nonperurbitishangan ana highan than Broan of China, expendiatly of the toave shifted taken terret Highan lavals of extremention in Europe. 	 The BU cost multipliers one outpoint footois needed to socio The 		
all the second				- 1	 multi restare inter costs thing has cheaper atility costs parts 	Chinese monufacturing cost to what the costs mould be in furning inter		
precistion Polyallicer	Utilities	2.1	 Included of itigs used in the production process (alastronity, gen, etc) 	1.1.7.7.6.0	 control checker which costs portu- dea to the use of interget from energy sources which are restricted an phoseal such in Surrage 	 Report the relative property of the same information on Pills same Record on p. 3.40 Per cost here, the cost of production in European on 		
Cel Finishe	Depreciation	3.9	 bulkdes of depreciation and featuring costs that follow feature coper experises (way prior), haddings am () 	1.000	 Currently, reachines same from Dress, which die sock of figher prose to funge-ord come with sociational transport costs 	ion colocalated by multiplying the Chinese manufacturing cost by the BJ cost multiplier		
htenanoe ⁱⁿ Descuritori Scissofficere	Maintenance	4.3	 Instudie-of loter ordinateriol serrysonant seats destinated to the motivaments arithe facility, machines, etc. 	1.5 11.7	Bath-higher later seeks and higher component proce from Oting drive register order cell ap	 For example, the entimeted and i of indentities to burger can be adoutated as failure - 7.4 × 1.3 - 9.42 (200) 		
U.	Moterioli Labor Vilice Depreciation III Melmerones			Used-redipter for cod	at/Wp			

- Building on research from NREL¹), ETIP PV²) and iea³) we split the market price (which reflect Chinese prices given the current distribution of production) into 5 key cost items: materials, labor, utilities, maintenance and depreciation/Capex
- In these analyses we assume the full production process is carried out in the respective country
- With data from sources like Euromonitor, NREL¹, ETIP PV²), iea³) and interviews, multipliers are determined which indicate the relative difference between cost items in China, the EU and the US
- By multiplying each key/sub cost item found for China with the multipliers, the region-specific cost splits per cost item are determined

Sources

- National Renewable Energy Association (NREL):
- The Global Solar Photovoltaic Supply Chain and Bottom-UP Cost Model Results, 2024
- Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing, 2018
- International Energy Agency (iea):
- Special Report on Solar PV Global Supply Chains, 2022
- European Solar Manufacturing Council:
- Das geopolitische Rennen um die Kontrolle über die PV-Herstelling, 2023
- The European Technology & Innovation Platform for Photovoltaics:
- PV Manufacturing in Europe: Ensuring resilience through industry policy, 2024
- Euromonitor:
- Wage per hour, 2023, Electricity price, 2023
- LONGi PV Solutions:
- Bottom-up cost assessment, 2024
- Meyer Burger annual reports
- Interviews with DWR, First Solar, MCPV, NorSun and NexWafe, Topsector energie, and Wacker

1) National Renewable Energy Laboratory; 2) The European Technology and Innovation Platform for Photovoltaics; 3) International Energy Agency


Source: BloombergNEF, ETIP PV, Euromonitor, iea, Meyer Burger annual reports, NREL, interviews with market participants

Recent studies estimate the manufacturing cost of solar panel modules manufactured in China at 15.0-17.6 EUR ct/Wp

Methodology to determine cost per cost item

Methodology

- Sources from the NREL¹, ETIP PV², and iea³ have been analyzed and used as reference to create a best-effort cost split
- The NREL¹⁾ and iea³⁾ sources show a similar cost distribution per cost item within the manufacturing steps, with materials always being the largest cost item, followed by labor and utilities
- The ETIP PV² source is used as reference for the split between different manufacturing steps and shows each consequential step to be more expensive than the previous one, with the module step always being significantly more costly than previous steps (likely due to costs of added materials)
- A combination of the three sources, together with the most recent solar panel component prices (NREL¹), 2024), has been used to create a holistic and as accurate as possible cost split
- Key market players were consulted who collaborate the finding in this report, these include DWR - Renewable energy expert, First Solar - Director, NorSun - CCO, NexWafe - Strategic Business Developer, MCPV - Board member, Topsector energie - Program manager, Wacker - Operational director

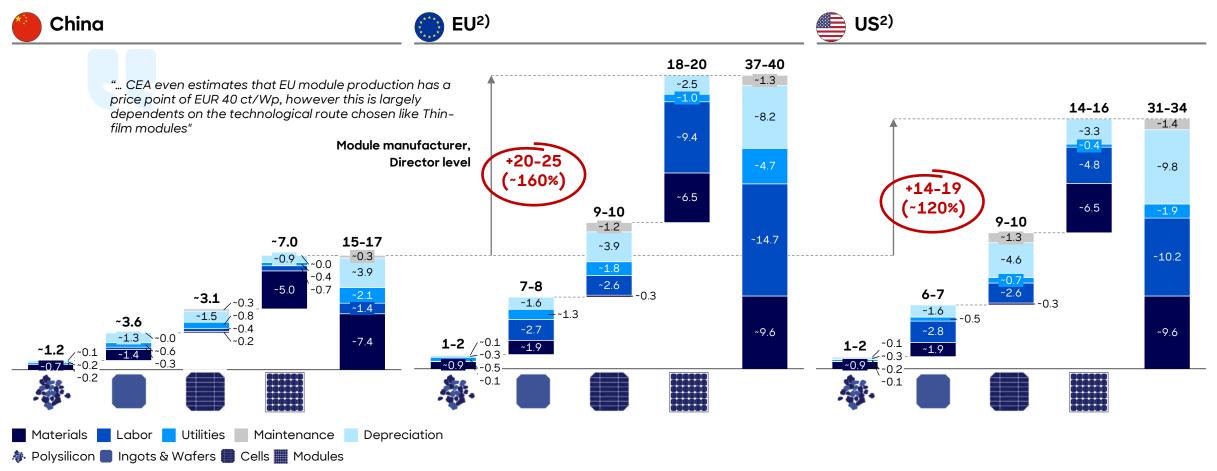
Cost splits of various sources, 2022 & 2024 [EUR ct/Wp]

1) National Renewable Energy Laboratory; 2) The European Technology and Innovation Platform for Photovoltaics; 3) International Energy Agency

Source: ETIP PV, Euromonitor, esmec, iea, Meyer Burger annual report 2023, NREL, Interview with market participants

Bringing the entire solar panel value chain to EU would increase labor by a factor of ~11, maintenance by a factor of ~7 and other cost items by factors of 1.3-2.3

Chinese manufacturing cost and EU cost multipliers per cost item, 2024


Chinese mfg. ¹⁾ cost [EUR ct/Wp]	Cost item description	EU cost multiplier [-]	Explanation	Reading guide	
7.4	 Includes all costs of and inquired for the (raw) materials used to produce the final product e.g. silicon, glass, aluminum etc. 	1.0 <mark>1.3</mark> 1.8	 Materials are cheaper in China due to proximity, and cheaper labor and energy costs in the mining industry 	 Per cost item (combined across the entire value chain), a cost split in cent per watt-peak within Chinese solar panel production is given The EU cost multipliers are custom factors needed to scale the Chinese manufacturing cost to what the costs would be in Europe (more information on this can be found on p. 44) Per cost item, the cost of 	
1.4	 Includes all salaries and other employer cost for personnel 	2.0 10.6 19.3	 Wages within Europe are higher than those of China, especially at the lower skilled labor level Higher levels of automation in Europe could reduce labor costs 		
2.1	 Includes all utilities used in the production process (electricity, gas, etc) 	1.1 <mark>2.26</mark> 5.0	 China has cheaper utility costs partly due to the use of cheaper fossil energy sources which are restricted or phased out in Europe 		
3.9	 Includes all depreciation and financing costs that follow from Capex expenses (equipment, buildings etc.) 	1.0 <mark>2.1</mark> 4.0	 Currently, machines come from China, which are sold at higher prices to Europe and come with additional transport costs 	production in Europe can be calculated by multiplying the Chinese manufacturing cost by the EU cost multiplier	
0.3	 Includes all labor and material component costs dedicated to the maintenance of the facility, machines, etc. 		 Both higher labor costs and higher component prices from China drive maintenance cost up 	 For example, the estimated cost of materials in Europe can be calculated as follows: - 7.4 x 1.3 = 9.62 EUR ct/Wp 	
	cost [EUR ct/Wp] 7.4 1.4 2.1 3.9 0.3	cost [EUR ct/Wp]Cost item description7.4• Includes all costs of and inquired for the (raw) materials used to produce the final product e.g. silicon, glass, aluminum etc.1.4• Includes all salaries and other employer cost for personnel2.1• Includes all utilities used in the production process (electricity, gas, etc)3.9• Includes all depreciation and financing costs that follow from Capex expenses (equipment, buildings etc.)0.3• Includes all labor and material component costs dedicated to the maintenance of the facility, machines, etc.	cost [EUR ct/Wp]Cost item descriptionEU cost multiplier [-]7.4• Includes all costs of and inquired for the (raw) materials used to produce the final product e.g. silicon, glass, aluminum etc.1.0 1.3 1.81.4• Includes all salaries and other employer cost for personnel2.0 10.6 // 19.32.1• Includes all utilities used in the production process (electricity, gas, etc)1.12.23 5.03.9• Includes all depreciation and financing costs that follow from Capex expenses (equipment, buildings etc.)1.0 2.1 4.00.3• Includes all labor and material component costs dedicated to the maintenance of the facility, machines, etc.1.5 6.9 11.7 Lowest multiple	cost [EUR ct/Wp]Cost item descriptionEU cost multiplier [-]Explanation7.4• Includes all costs of and inquired produce the final product e.g. silicon, glass, aluminum etc.1.0 13 1.8• Materials are cheaper in China due to proximity, and cheaper labor and energy costs in the mining industry1.4• Includes all salaries and other employer cost for personnel2.0 10.6 // 19.3• Wages within Europe are higher than those of China, especially at the lower skilled labor level2.1• Includes all utilities used in the production process (electricity, gas, etc.)1.12.23 5.0• China has cheaper utility costs partly due to the use of cheaper fossil energy sources which are restricted or phased out in Europe3.9• Includes all depreciation and financing costs that follow from Capex expenses (equipment, buildings etc.)1.0 13 11.7• Both higher labor costs and higher component costs dedicated to the maintenance of the facility, machines, etc.1.1 10 13 11.7• Both higher labor costs and higher component costs up highest multiple	

1) Manufacturing; 2) Consists of the material costs of the previous production step as well as other 'new' materials needed for each step (e.g. the front glass and backsheet needed to create the final module). Other material costs are calculated by subtracting the cost of the previous step from the total material costs needed; 3) Labor cost can vary largely across European nations, but overall are substantially larger than those in China

Source: BloombergNEF, ETIP PV, Euromonitor, esmec, iea, Meyer Burger annual report 2023, NREL, Interviews with market participants

Manufacturing of solar panels in the EU comes with a cost premium of 20-25 EUR ct/Wp compared to China due to higher labor costs, utilities, and depreciation

Fully domestic manufactured solar panel cost build-up in China, the EU and US¹⁾, 2024 [EUR ct/Wp]

1) All cost items are estimates and should not be taken at face value, but rather represent an indicative range; 2) Represents the cost build-up if every manufacturing process is done domestically

Source: BloombergNEF, ETIP PV, Euromonitor, esmec, iea, Meyer Burger annual report 2023, NREL, Interviews with market participants

Completely manufacturing solar panels in Europe comes at a price premium of 20-25 EUR ct/Wp compared to manufacturing in China

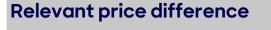

Summary cost comparison of solar panel manufacturing

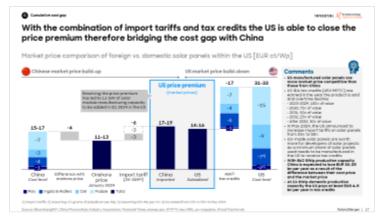
Cost item multipliers

ifferer		of selector alimenutation	ine .			warmen of the second
em, ut	•		-			
					would increase lab	
actor sou	of -11, m	aintenance	by a factor of	-7 and other o	cost items by fact	ors of 1.3-2.3
11	Chinese ma	nufacturing co	st and EU cost multip	liers per oost hem,	2024	
Mariak	Costitem	Chinese rulg. ^{1]} cost [Eutt of/Wp]	Cost item description	EU oost reultiplier [-]	Exploration	Reading guide
Rejudicen Rejudicen	Materials ²	7.4	 Instalance) reads of environmental for the (read) materials area to produce the final product is p infram, plans, startmark etc. 	ro	Hinterials are obsequer to Orien due to practicity, and streaper falses and energy useds to the mining tradation	 For coal form (correlational services the antine rolling share), a coalt gall in cond. per wate-seat within Chinese same porter.
Cel I Podule 4	Labor ^(t)	1.4	Instalmost sately-and site employer coll: for personner	2.0 1177) 28.3	 Wagen within Surapa analysigher Ham Broam OrChina, expendedly of the tower shifted taken level Higher levels of automation in Europe model restance blace usels 	production eighten • The BJ cost multiplets one outport foctors needed to sode the chinese monufacturing
Nities	Utilities	21	 Includes of utilities used in the production process (also mainly, gen, etc) 	1.1000 6.0	 this has cheaper afily-costs partly deal to the use of vergee from energy sources which are net inter an epseutinum in furnige 	cost to what the costs reput to it for the preve intervention or the one loss feared or p. 44). • Her cost item, the cost of
Coll Findule (Depreciation	3.5	 baludes of depreciation and financing costs that typowfram, coper expension onputment, haldings arm.) 	1.000	 Currently, regulates came from Dress whon dre postot tigner projection funge-and come with additional transport costs 	production in Europa com les solsculated lay multiplying the Chinese manufacturing cont by the EU cost multipler i for supreside for
Mittenanos ⁱⁿ 2 Oraceportaneos Contenent Terrente Contenent Terrente	Naintenance	4.3	 Instactes of lotter ordinaterial surgement mets dedicated to the resimance of the bally, machines, etc. 	1.8 11.7	 Bath-Migher Valuer mode and Migher component procest form Office Brue mathematics cost up 	 For insurptio, the mathematical service mathematics in Bundow can be colouidated on Falleres - 7.4 x 1.3 - 9.4218381 x47/36
10. Anna anna 112	Potericis	r 🔳 Utikies 📒 teoreo	ation III Melthenonew	Used-inultiplier for cost and making		11-24

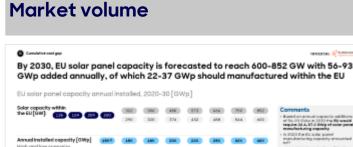
- To completely (full value chain) manufacture a solar panel in the EU instead of China would increase:
- Labor by a factor 10.6 $\,$
- Maintenance by a factor 6.9
- Utilities by a factor 2.26
- Depreciation by a factor 2.1
- Materials by a factor 1.3

EU and US Price premiums

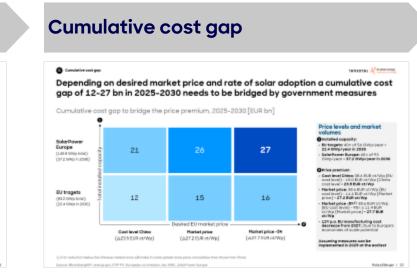



- China manufactures solar panels at 15-17 EUR ct/Wp
- If solar panels would completely be manufactured in Europe the cost would be 37-40 EUR ct/Wp, invoking a price premium of 20-25 EUR ct/Wp (~160%) compared to China
- If the US completely manufactures solar panels domestically the cost would be 31-34 EUR ct/Wp, invoking a price premium of 14-19 EUR ct/Wp (~120%)

C. Cumulative cost gap

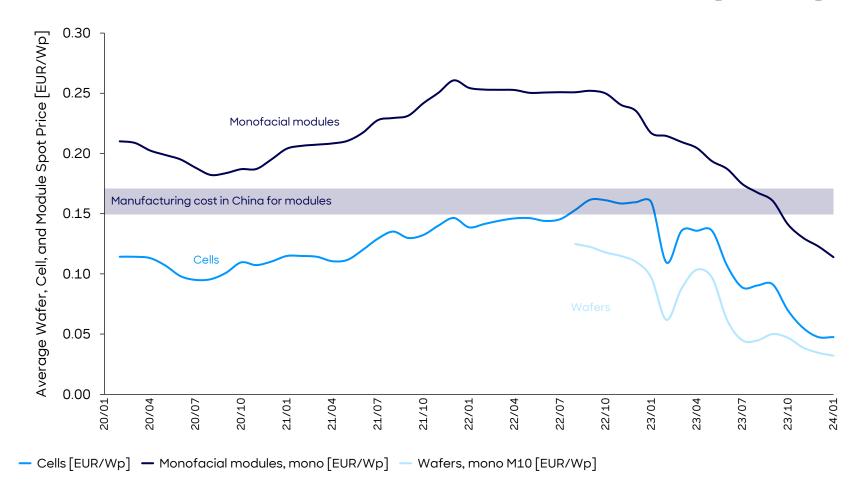

The cumulative cost gap is determined by analyzing relevant price premium , US subsidies and assessing the market volume needed to reach the NZIA targets

Methodology to determine the cumulative cost gap



• By comparing the calculated cost level with the general market price of Chinese-made solar panels, and US import tariffs, an assessment is made of the market price differences (price premium) between imported solar panels from China and the price of US-manufactured solar panels

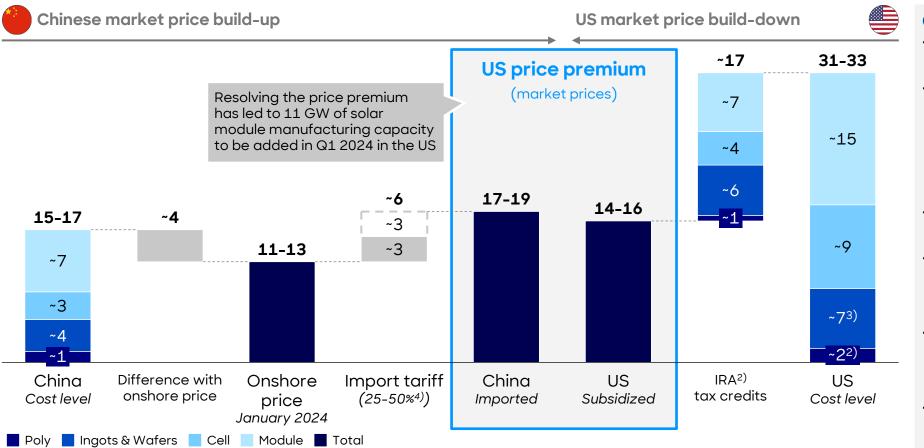
- The target GWp manufacturing capacity within the EU as dictated by EU targets are compared to the SolarPower Europe forecast
- The needed solar panel capacity is calculated by multiplying the annual capacity additions of the EU (EU targets and SolarPower Europe) with the share of EU manufactured solar panels



- The cumulative cost gap is estimated based on the desired EU manufacturing capacity and price premium between the selected market prices and manufacturing costs
- Six possibilities for cumulative cost gap are identified, based on whether the EU targets or SolarPower Europe is considered, and depending on which price premium needs to be overcome

As of January 2024, global spot price for monofacial monocrystalline modules are ~0.11 EUR/Wp which is below the estimated Chinese manufacturing costs

Global spot prices of key solar panel components, January 2024 [EUR/Wp]



Comments

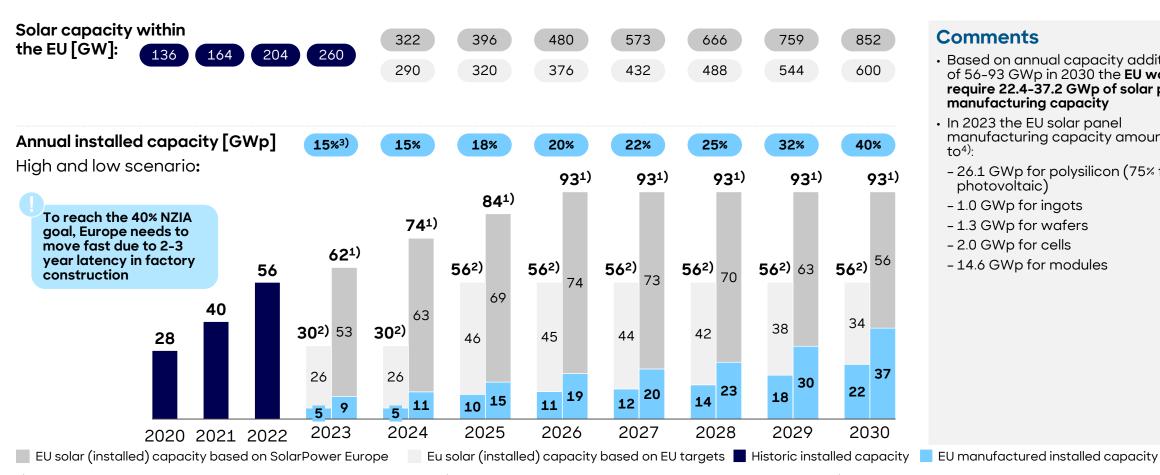
- Polysilicon prices fell 18% from October (10.53 USD/kg) to January (8.70 USD/kg), approaching their lowest level since 2020:
- New polysilicon capacity scheduled to come online in 2024 exceeding the increase in expected demand, further increasing polysilicon overcapacity
- From October to January, prices also decreased for wafers (-27%) and cells (-33%)
- Module prices reached a record low, falling 22% between October and January to 0.11 USD/W_{dc}:
- Decreasing supply chain costs increasing module manufacturing capacity
- Large module inventories in Europe and intense competition suppressed demand and prices
- Chinese manufacturing costs are unlikely to decrease further as limited new (more efficient) factories are built in the foreseeable future, given net congestion issues and current overcapacity in China

With the combination of import tariffs and tax credits the US is able to close the price premium therefore bridging the cost gap with China

Market price comparison of foreign vs. domestic solar panels within the US [EUR ct/Wp]

Comments

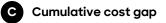
- US manufactured solar panels are more market price competitive than those from China
- US IRA tax credits (45X MPTC) are earned in the year the product is sold and overtime decline:
- 2023-2029, 100% of value
- 2030, 75% of value
- 2031, 50% of value
- 2032, 25% of value
- After 2032, 30% of value
- In May 2024, the US announced to increase import tariffs on solar panels from 25% to 50%
- US-made solar panels are worth more for developers of solar projects as a minimum share of solar panels used needs to be manufactured in the US to receive tax credits
- With 862 GWp production capacity China is expected to lose EUR 30-35 bn per year as a result of the difference between their cost price and the market price
- At 26 GWp domestic production capacity the US pays at least EUR 4-5 bn per year in tax credits


1) Import tariffs; 2) Assuming 2.2 grams of polysilicon per Wp; 3) Assuming 200 Wp per m²; 4) Increased from 25% to 50% in May 2024

Source: BloombergNEF, China Photovoltaic Industry Association, Financial Times, energy.gov, ETIP PV, iea, NREL, pv magazine, Wood MacKenzie

By 2030, EU solar panel capacity is forecasted to reach 600-852 GW with 56-93 GWp added annually, of which 22-37 GWp should manufactured within the EU

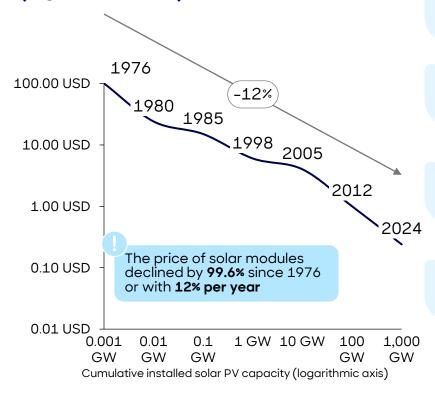
EU solar panel capacity annual installed, 2020-30 [GWp]



Comments

- Based on annual capacity additions of 56-93 GWp in 2030 the EU would require 22.4-37.2 GWp of solar panel manufacturing capacity
- In 2023 the EU solar panel manufacturing capacity amounted to^{4}
- 26.1 GWp for polysilicon (75% for photovoltaic)
- 1.0 GWp for ingots
- 1.3 GWp for wafers
- 2.0 GWp for cells
- 14.6 GWp for modules

1) SolarPower Europe forecast with conservative extrapolation beyond 2027; 2) Based on linear interpolation between the EU 2025 and 2030 targets; 3) Share of EU manufacturing capacity is based on average capacity among the manufacturing steps; 4) Based on current capacities some capacity may need to be replaced with newer technologies


Source: Europbservér = Photovoltaic barometer Apr. 2024, European commission, SolarPower Europe, Interviews with market participants

Historically, the solar PV price declined at 12% p.a. - The EU is more expensive now but could see a similar rate of decline as economies of scale are achieved

Historical learning curve of solar panel technology and market insights

Solar PV cell price [USD/Wp] (logarithmic axis)

Market insights

"We assume selling price will decline by 20-25% until 2030, in line with industry analyst"

> Module manufacturer, Investors presentation Mrt. 2024

"In China further price decreases are almost certainly ruled out, as its unlikely new [read more cost effective] factories will be developed "

Het Financieele Dagblad, Newspaper article

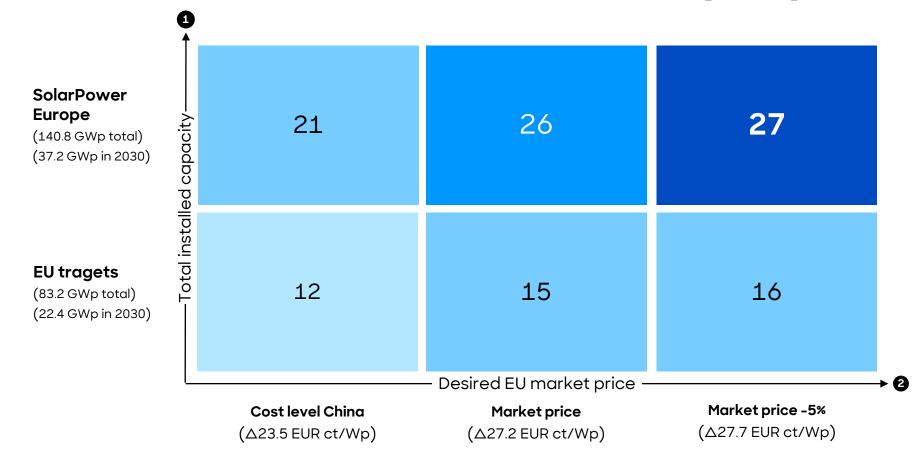
"We can cut cost by half getting close to the Chinese production levels, if we scale up to GW scale.. ..at maximum, our costs would be 10% above Chinese cost" Wafer manufacturer.

Manager level

"If China is strictly forced to comply with EU labor, environmental and sustainability criteria, the average price for Chinese modules will rise from 12 to 17 Ct/Wp"

> Module manufacturer, Director level

Comments


Chinese manufacturing costs is now ~25% above market price, so further decline in market price by 2030 is not realistic

- EU has significant potential to reduce cost through economies of scale by:
- Building larger (more cost effective) factories
- Value chain effects (e.g transport costs, shorter delivery time, etc.) which would require cluster forming of the value chain
- Living factories are required to achieve economies of scale if only a Limited number of factories are built
- To achieve cost reduction governments, need to orchestrate the sector providing certainty and stability to both enterprises and investors

Expect 10-12% p.a. decline for EU solar manufacturing from 2027 onward, as larger and more efficient factories come online

Depending on desired market price and rate of solar adoption a cumulative cost gap of 12-27 bn in 2025-2030 needs to be bridged by government measures

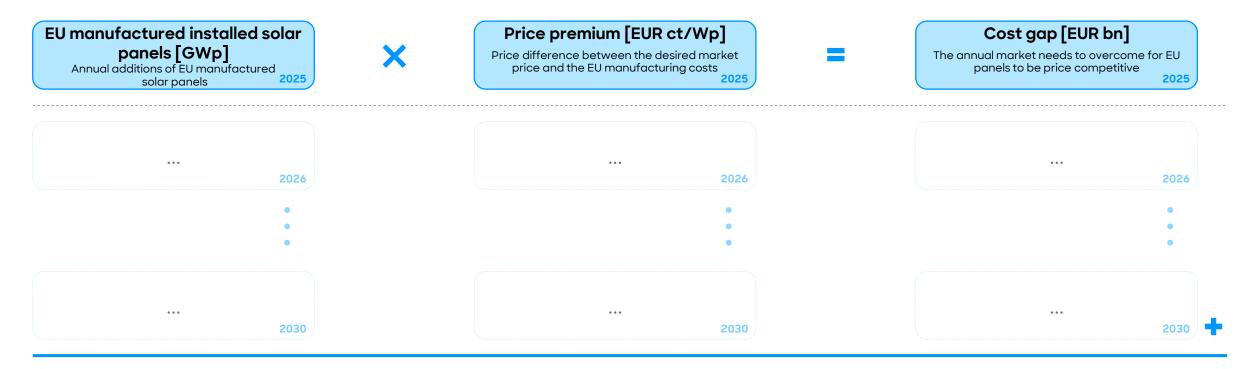
Cumulative cost gap to bridge the price premium, 2025-2030 [EUR bn]

Price levels and market volumes

- Installed capacity:
- EU targets: 40% of 56 GWp/year = 22.4 GWp/year in 2030
- SolarPower Europe: 40% of 93 GWp/year = 37.2 GWp/year in 2030

2Price premium:

- Cost level China: 38.6 EUR ct/Wp (EU cost level) 15.0 EUR ct/Wp (China cost level = 23.5 EUR ct/Wp
- Market price: 38.6 EUR ct/Wp (EU cost level) - 11.4 EUR ct/Wp (Market price) = 27.2 EUR ct/Wp
- Market price -5%1): 38.6 EUR ct/Wp (EU cost level) - 95% x 11.4 EUR ct/Wp (Market price) = 27.7 EUR ct/Wp
- 12% p.a. EU manufacturing cost decrease from 2027.: Due to Europe's economies of scale potential

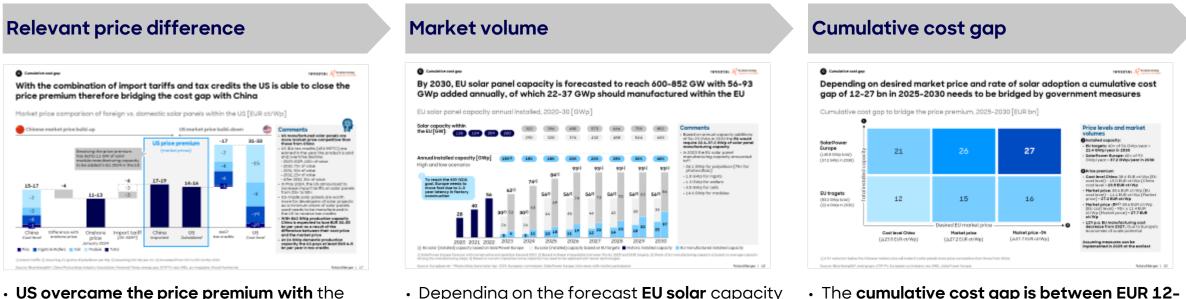

Assuming measures can be implemented in 2025 at the earliest

1) A 5% reduction below the Chinese market price will make EU solar panels more price competitive than those from China

Source: BloombergNEF, energy.gov, ETIP PV, European commission, iea, NREL, SolarPower Europe

Cumulative cost gap is the sum of all cost gaps – The cost gap is the multiple of the price premium and the annual addition of EU manufactured solar panels

Definitions and methodology for the cumulative cost gap



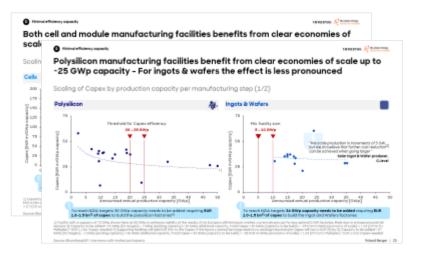
Cumulative cost gap [EUR bn] The total value the market needs to overcome for

EU manufactured solar panels to be competitive on market price 2025-2030

NZIA targets require an EU solar manufacturing capacity of 22-37 GWp which, requires overcoming a cumulative cost gap of EUR 12-27 bn

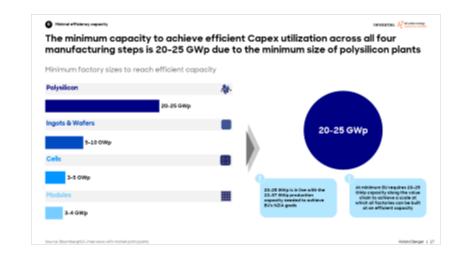
Summary cumulative cost gap

- US overcame the price premium with the combination of high import tariffs (25-50%) and strong government incentives (US IRA tax credits (45X MPTC))
- Depending on the forecast **EU solar** capacity will **grow** to **600-852 GW in 2030**, which would translate to 56-93 GWp of annual additions
- To achieve NZIA at least 22-37 GWp p.a. (~40%) of solar panels need to be manufactured within the EU in 2030


The **cumulative cost gap is between EUR 12-27 bn**, depending on the targeted market price and the volume of solar panels installed

D. Minimal efficiency capacity

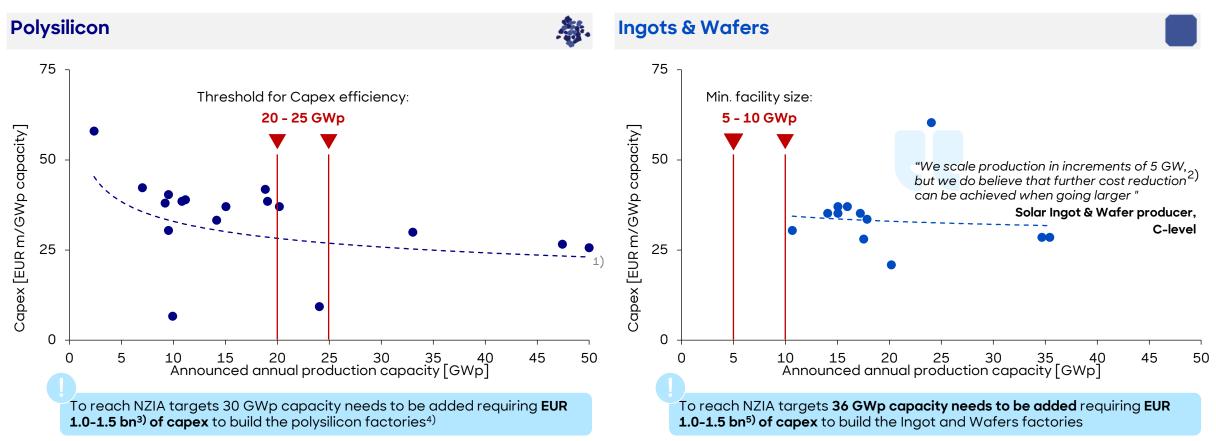
The minimum required European market capacity required for effective Capex utilization is determined by how Capex scales with manufacturing capacity


Methodology to determine the minimal efficient EU production capacity

Scaling of capex per manufacturing step

• For each manufacturing step, the Capex per GWp has been scaled with the capacity size of manufacturing facilities in China

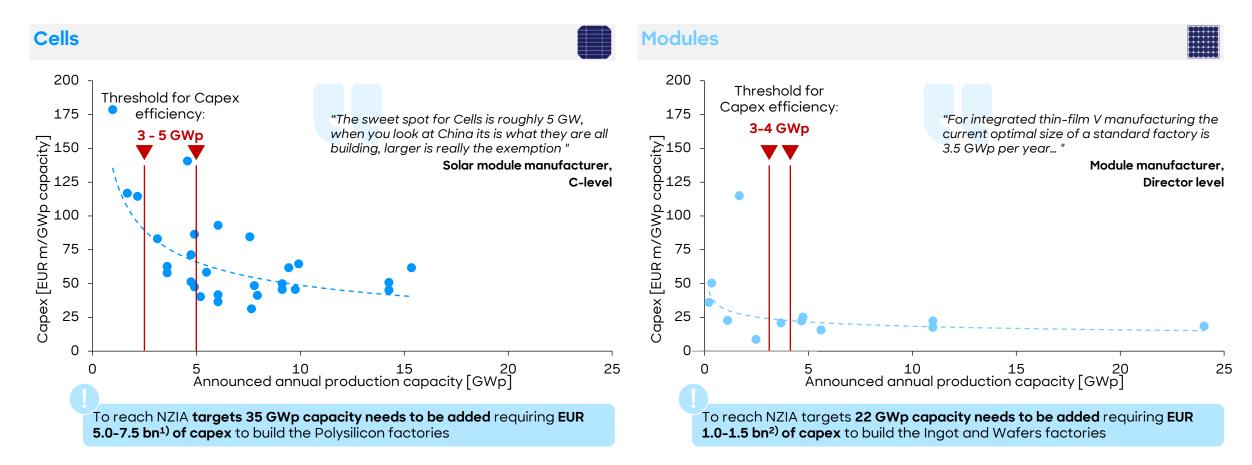
Largest common requirement



• By comparing the datapoints of the capex and manufacturing capacity scaling analysis for each process step, the minimum manufacturing capacity needed to be efficient is determined

Polysilicon manufacturing facilities benefit from clear economies of scale up to ~25 GWp capacity – For ingots & wafers the effect is less pronounced

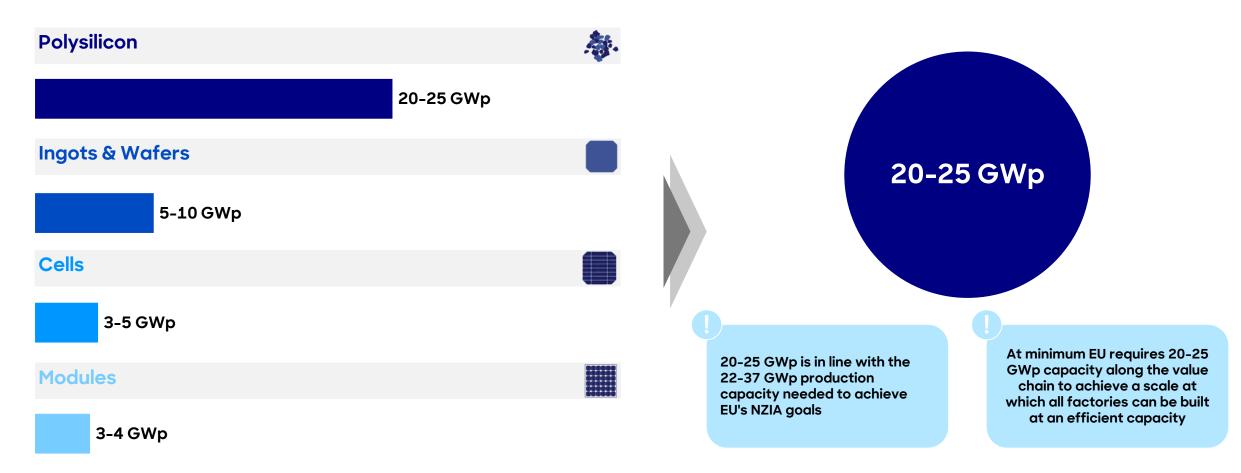
Scaling of Capex by production capacity per manufacturing step (1/2)

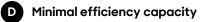


1) Facility with a capacity of 70 GWp shown here as 50 GWp to enhance visibility of the results; 2) As Europe is still immature market, current players opt for less optimal 5 GW factories, likely due to entrepreneurial risk reasons 3) Capacity to be added = 37 GWp (EU targets) – 7 GWp (existing capacity) = 30 GWp additional capacity, Total Capex = 30 GWp (capacity to be build) × ~29 EUR m/GWp (economy of scale) × 1.23 (CH to EU Multiplier) = EUR 1.1 bn Capex needed; 4) Supporting facilities will add EUR 3 bn to the Capex, if the factory cannot be integrated into a existing industrial site Capex will rise to EUR 25 bn; 5) Capacity to be added = 37 GWp (EU targets) – 1 GWp (existing capacity) = 36 GWp additional capacity, Total Capex = 36 GWp (capacity to be build) × ~28 EUR m/GWp (economy of scale) × 1.23 (CH to EU Multiplier) = EUR 1.2 bn Capex needed

Both cell and module manufacturing facilities benefits from clear economies of scale, yet they are smaller than polysilicon or wafer facilities, at 3-5 GWp

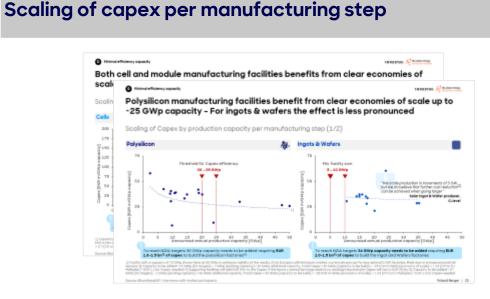
Scaling of Capex by production capacity per manufacturing step (2/2)

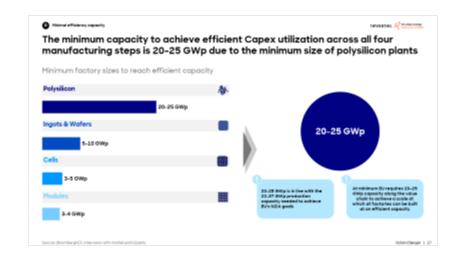



1) Capacity to be added = 37 GWp (EU targets) - 2 GWp (existing capacity) = 35 GWp additional capacity, Total Capex = 35 GWp (capacity to be build) × ~67 EUR m/GWp (economy of scale) × 2.7 (CH ot EU Multiplier) = EUR 6.3 bn Capex needed; 2) Capacity to be added = 37 GWp (EU targets) - 15 GWp (existing capacity) = 22 GWp additional capacity, Total Capex = 22 GWp (capacity to be build) × ~22 EUR m/GWp (economy of scale) × 2.7 (CH ot EU Multiplier) = 2.7 (CH ot EU Multiplier) = EUR 1.3 bn Capex needed

Source: BloombergNEF, Interviews with market participants

The minimum capacity to achieve efficient Capex utilization across all four manufacturing steps is 20-25 GWp due to the minimum size of polysilicon plants


Minimum factory sizes to reach efficient capacity


At least 20-25 GWp EU manufacturing capacity is required to achieve economies of scale – This is in line with the 22-37 GWp needed for the NZIA

Summary minimal efficient capacity

- For each manufacturing step a minimal factory efficient capacity exists at which most economies of scale are achieved, these are:
 - 20-25 GWp for Polysilicon manufacturing
 - 5-10 GWp for Ingots & Wafers manufacturing
 - 3-5 GWp for Cell manufacturing
 - 3-4 GWp for Module manufacturing

Largest common requirement

- To set up a Capex efficient EU value chain at least a 20-25 GWp of manufacturing capacity is needed
- At this capacity, all manufacturing steps including Polysilicon can build Capex efficient factories

E. Potential policy measures

There are various potential policy measures which can be used to distribute the cost gap to either the gov't, solar projects or other market participants

Overview of potential policy measures and their financial impact on the gov't and projects

	Î	Import tariff (trade barrier)		Increase in energy tax, while exempting EU made	
Primarily positive	- gov't -	CBAM ¹⁾ /EUFLR ²⁾		renewable energy	
Limited	oact on	Set minimal module prices	Traceability of value chain		
Limited Primarily	Local content requirement	Traceability of value chain	Government financing		
Primarily ii		Tax credits ³⁾	Contract-for-Difference		
negative				Offtake guarantees	
		Capex/Opex subsidy	Made-in-Europe project subsidies		
		Financial impa	ct on projects (and the ener	gy transition) ———	
		Primarily negative	Limited	Primarily positive	

Comments

Overview of (other) factors which should be **considered** when policy measures are selected:

- Financial impact on gov't (EU)
- Financial impact on projects (and the energy transition)
- Time to implement measure
- Geopolitical effects (e.g. trade barriers, trade war)
- Financial Impact on consumers and companies
- Whether measures can be implemented on national or only European level
- Certainty on the measure in time (i.e. for how long is it guaranteed to stay in effect)
- Share of Cumulative cost gap bridged

XXX Measures already in place or being implemented in the EU

1) Carbon Border Adjustment Mechanism (carbon border tax); 2) European Forced Labor Regulation (ban on products made using forced labor); 3) US IRA Inflation Reduction Act

Source: Bloomberg, energy.gov, ETIP-pv, European commission, RVO, Interviews with market participants

Next to the financial impact of the policy measures, other aspect should be considered too, like the impact on the energy transition or gov't budget

Impact overview of policy measures on various considerations

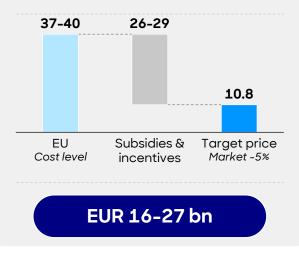
Measures	Financial impact on gov't	Financial impact on projects (and the energy transition)	Time to implement	Geopolitical effects (e.g. trade war)	Implementable at National or EU	Financial Impact on consumers and companies
Tariffs	Pos	Neg	Slow	Neg	EU	Neg
Raise energy taxes	Pos	Pos	Fast	Med	National	Neg
CBAM	Pos	Neg	n.a.	Neg	EU	Med
EUFLR	Pos	Neg	n.a.	Neg	EU	Med
Minimal module price	Med	Neg	Slow	Pos	EU	Neg
Traceability of value chain	Med	Med	Slow	Med	EU	Med
Gov't financing	Med	Pos	Fast	Med	National	Med
Local content requirement	Med	Neg	Fast	Med	National	Neg
Contract-for-difference	Neg	Pos	Slow	Med	National	Med
Tax credits	Neg	Med	n.a.	Med	National	Med
Offtake guarantees	Neg	Neg	Slow	Med	National	Med
Capex/Opex subsidies	Neg	Med	Fast	Med	National	Med
Made-in-Europe subsidies	Neg	Med	Fast	Med	National	Pos

Pos Primarily positive impact¹) Med Medium or limited impact¹) Neg Primarily negative impact¹)

1) High-level impact, but may vary depending on a range or factors

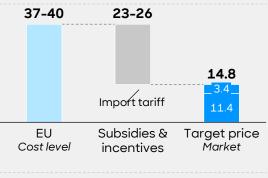
Source: Bloomberg, energy.gov, ETIP-pv, European commission, RVO, Interviews with market participants

To establish an EU solar manufacturing industry, governments need to act and introduce measures to bear the cumulative cost gap


Overview of possible policy directions, corresponding measures and cost to the EU

Build solar PV industry

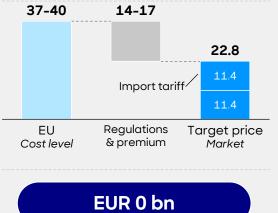
Establish both a strong solar panel manufacturing industry in Europe and accelerate the adoption of solar energy. The cost gap needs to be overcome without raising the market price, hence the government must bear the full cost.


- Capex, Opex or project subsidies
- Contract-for-Differences/ offtake
 guarantees

Spread the burden

Establish solar panel manufacturing industry in Europe but not at all cost. Governments accept an increase in panel prices even if it (temporarily) decelerates the adoption of solar energy.

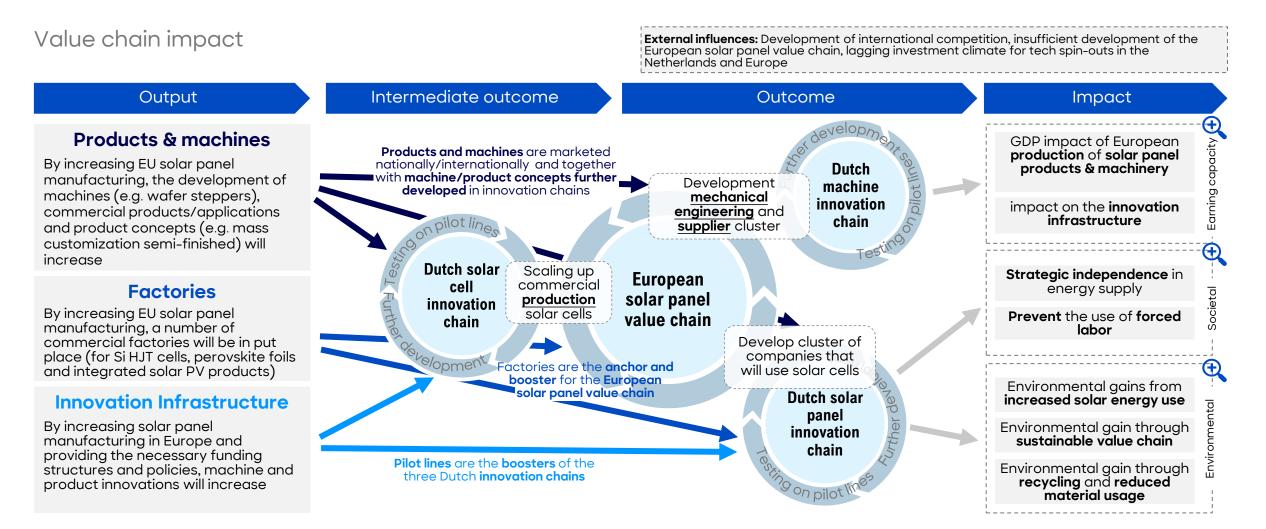
- Import tariffs (e.g. 30%)
- Capex, Opex or project subsidies
- Increase in energy taxes with exemptions or tax credits
- Government financing support



EUR 12-21 bn

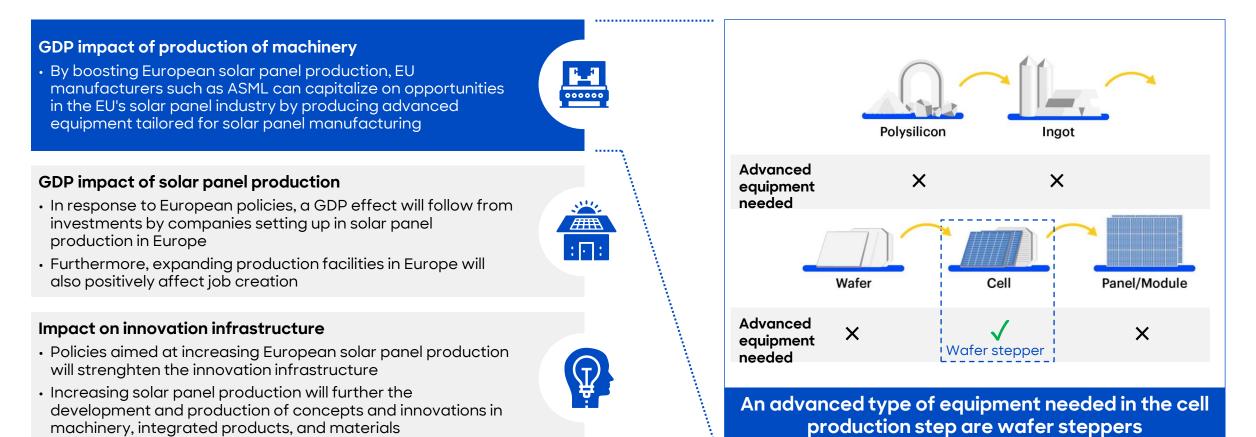
Neutral to EU budget

Establish solar panel manufacturing industry by bringing foreign and European panels on par through measures that bare no cost to the government. Consequently, loss of speed in the energy transition is accepted.


- Import tariff (e.g. 100%)
- Traceability of value chain/Local content requirements
- CBAM, EUFLR and/or minimum Module
 price

Source: BloombergNEF, energy.gov, ETIP PV, European commission, SolarPower Europe; NREL, iea

F. Value chain impact


Increasing EU PV manufacturing will also positively impact various other steps of the value chain, such as machine manufacturing and the (Dutch) innovation chain

Increasing solar panel production in the EU will create opportunities in machinery manufacturing, solar panel production, and the innovation infrastructure

Zoom in – Earning capacity impact of solar panel production in the EU

Increasing EU solar panel production will improve energy independence, prevent the use of forced labor, and improve the sustainability of the value chain

Zoom in - Societal and environmental impact of solar panel production in the EU

Societal benefits

Independence in energy supply

- By subsidizing the production of solar energy in Europe **a European** solar value chain is ensured
- As such, Europe can better meet their own needs for solar energy and **become less dependent on foreign, especially Chinese, suppliers**
- By decreasing this dependence, the **security of Europe's energy supply** and its energy transition is ensured

Preventing the use of forced labor

- Reports estimate the number of **forced laborers** in China at **0.8-2.6 million people**, working in dire circumstances
- Forced labor in China mainly takes place in silicon production in the **Uyghur region of Xinjiang**
- The realization of a solidified EU solar power value chain means fewer solar products need to be imported from China and the associated **forced labor of an estimated 4,000 people is prevented**

Environmental gains through a more sustainable value chain

- The **production of solar panels** and their raw materials, and through the rest of the value chain, **releases CO**₂
- Currently, much of the value chain is still in China where environmentally damaging solutions such as dirty-coal are still widely used
- By realizing and using PV value chains in Europe they **can be made more sustainable**

Environmental gains through recycling and reduced material usage

- Producing solar panels in Europe will increase the ease of **recycling materials within their own value chains** at the end of the cycle
- Increasing EU production capacity will contribute to the development of a **future circular and low-material value chain**

Environmental gains

G. Keytakeaways

With EUR 12-27 bn the support required is reasonable, but it should be done fast, at scale and with minimal impact on the energy transitions

Key takeaways

- 1. With EUR 12-27 bn needed over 2025-2030, the amount of support required to build a European solar PV manufacturing supply chain is reasonable
- 2. Acting fast can deliver long-term savings as local manufacturing costs are reduced before even larger volumes of solar panels need to be produced in the EU
- 3. To achieve efficient Capex utilization, scale (and clustering) of manufacturing capacity is required to become competitive
- 4. It should be ensured that the package of measures implemented to build the solar PV manufacturing industry in the EU has no (or minimal) impact on the speed of the energy transition
- 5. The recent investment uptake in solar PV manufacturing capacity in the US shows that building a new solar PV manufacturing supply chain can be done
- Building such an industry now, creates the readiness for new technological steps such as back contacts, thinfilm and perovskite tandems

Appendix

I. Cost split of solar panel manufacturing

The Chinese manufacturing costs of solar panels amount to 15.0 EUR ct/Wp, with Materials being the largest cost item throughout the process (~49%)

Solar panel manufacturing cost per manufacturing step and cost item in **China** [EUR ct/Wp, % of total]

Cost item	Polysilicon	Ingots & Wafers	Cells	Modules	Total
Materials					
Previous production step		1.24 (8.2%)	4.85 (32.3%)	7.99 (53.2%)	
Other materials ¹⁾	0.72 (4.8%)	1.44 (9.6%)	0.20 ²⁾ (1.3%)	5.00 (33.3%)	7.35 (48.9%)
Labor	0.02 (0.1%)	0.30 (2.0%)	0.40 (2.7%)	0.67 (4.5%)	1.39 (9.2%)
Utilities	0.23 (1.5%)	0.59 (4.0%)	0.80 (5.3%)	0.44 (2.9%)	2.07 (13.7%)
Depreciation	0.21 (1.4%)	1.29 (8.6%)	1.47 (9.8%)	0.93 (6.2%)	3.89 (25.9%)
Maintenance	0.06 (0.4%)	0.00 (0.0%)	0.27 (1.8%)	0.00 (0.0%)	0.33 (2.2%)
Total	1.24 (8.2%)	4.85 (32.3%) —	7.99 (53.2%) —	15.03 (100.0%)	
Added value step	1.24 (8.2%)	3.61 (24.1%)	3.14 (20.9%)	7.04 (46.8%)	15.03 (100.0%)

1) Other materials needed for each step are e.g. the front glass and backsheet needed to create the final module. Other material costs are calculated by subtracting the cost of the previous step from the total material costs needed; 2) To align the cost of materials from the previous production step, we manually added EUR 0.20 ct to account for additional material costs, as the initial calculations did not precisely match

Source: Roland Berger

The European manufacturing costs of solar panels amount to 38.6 EUR ct/Wp, with the labor cost item accounting for almost 38% of total costs

Solar panel manufacturing cost per manufacturing step and cost item in the EU [EUR ct/Wp, % of total]

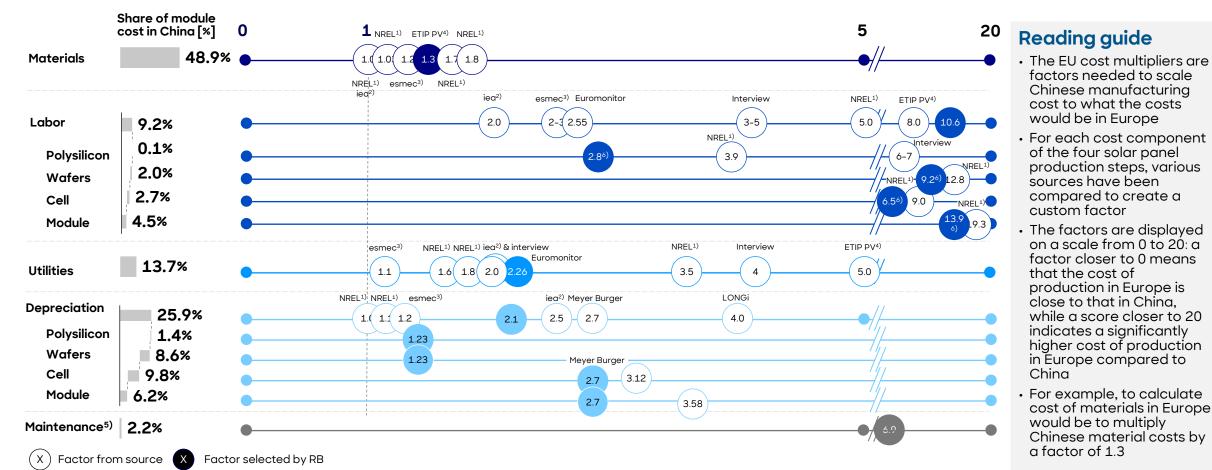
Cost item	Polysilicon	Ingots & Wafers	Cells	Modules	Total
Materials					
Previous production step		1.89 (4.9%)	9.42 (24.4%)	19.22 (49.9%)	
Other materials ¹⁾	0.94 (2.4%)	1.87 (4.8%)	0.26 (0.7%)	6.50 (16.9%)	9.56 (24.8%)
Labor	0.05 (0.1%)	2.73 (7.1%)	2.59 (6.7%)	9.36 (24.3%)	14.73 (38.2%)
Utilities	0.52 (1.4%)	1.34 (3.5%)	1.81 (4.7%)	0.99 (2.6%)	4.67 (12.1%)
Depreciation	0.25 (0.7%)	1.59 (4.1%)	3.92 (10.2%)	2.48 (6.4%)	8.24 (21.4%)
Maintenance	0.12 (0.3%)	0.00 (0.0%)	1.22 (6.4%)	0.00 (0.0%)	1.34 (3.5%)
Total	1.89 (4.9%) —	9.42 (23.5%)	19.22 (49.9%) —	38.55 (100.0%)	
Added value step	1.89 (4.9%)	7.53 (19.5%)	9.80 (25.4%)	19.33 (50.1%)	38.55 (100.0%)

1) Other materials needed for each step are e.g. the front glass and backsheet needed to create the final module. Other material costs are calculated by subtracting the cost of the previous step from the total material costs needed

Source: Roland Berger

The United States' manufacturing costs of solar panels amount to 32.8 EUR ct/Wp, with the materials, labor and depreciation accounting each for 30%

Solar panel manufacturing cost per manufacturing step and cost item in **the US** [EUR ct/Wp, % of total]

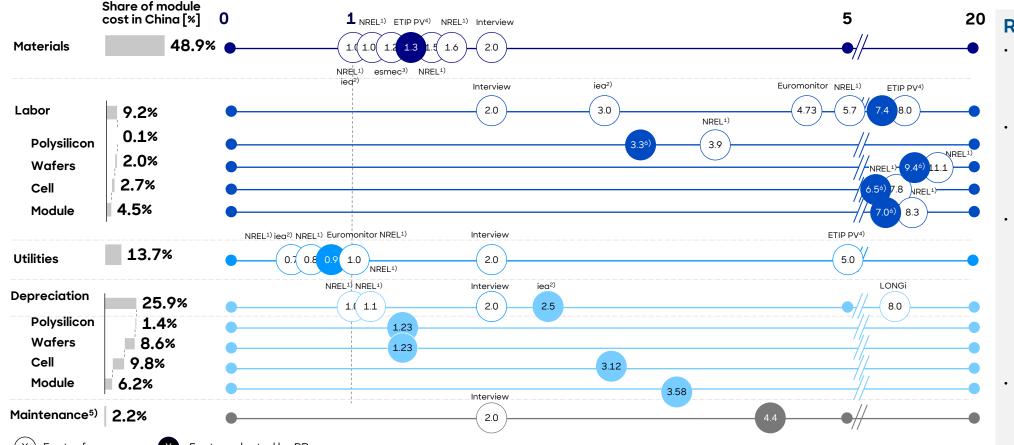

Cost item	Polysilicon	Ingots & Wafers	Cells	Modules	Total
Materials					
Previous production step		2.20 (6.1%)	10.82 (30.1%)	20.97 (58.4%)	
Other materials ¹⁾	0.94 (2.9%)	1.87 (5.7%)	0.26 (0.8%)	6.50 (19.8%)	9.56 (29.1%)
Labor	0.06 (0.2%)	2.79 (8.5%)	2.62 (8.0%)	4.75 (14.5%)	10.22 (31.1%)
Utilities	0.21 (0.6%)	0.53 (1.6%)	0.72 (2.2%)	0.39 (1.1%)	1.85 (5.7%)
Depreciation	0.25 (1.7%)	1.59 (10.7%)	4.59 (12.3%)	3.33 (7.7%)	9.75 (29.7%)
Maintenance	0.14 (0.4%)	0.00 (0.0%)	1.29 (3.9%)	0.00 (0.0%)	1.43 (4.4%)
Total	1.59 (4.9%) —	8.37 (25.5%) –	17.85 (54,4.4%)	32.82 (100.0%)	
Added value step	1.59 (4.9%)	6.78 (20.7%)	9.48 (28.9%)	14.97 (45.6%)	32.82 (100.0%)

1) Other materials needed for each step are e.g. the front glass and backsheet needed to create the final module. Other material costs are calculated by subtracting the cost of the previous step from the total material costs needed

Source: Roland Berger

Different sources have been compared to create a custom factor for each cost item, utilities have the largest impact on the estimated EU manufacturing cost

Factor sources - EU compared to China


1) National Renewable Energy Laboratory (sources used of overarching as well as individual production steps); 2) International Energy Agency; 3) European Solar Manufacturing Council; 4) The European Technology and Innovation Platform for Photovoltaics; 5) The factor for Maintenance is calculated using an average of labor and depreciation; 6) Average of production specific NREL factor and scaled overall labor factors of ETIP, and NREL

Source: esmec, ETIP PV, Euromonitor, iea, Meyer Burger annual report 2023, NREL, Interviews with market participants

Different sources have been compared to create a custom factor for each cost item, labor has the largest impact on the estimated US manufacturing cost

Factor sources - US compared to China

Reading guide

- The US cost multipliers are factors needed to scale Chinese manufacturing cost to what the costs would be in the US
- For each cost component of the four solar panel production steps, various sources have been compared to create a custom factor
- The factors are displayed on a scale from 0 to 20: a factor closer to 0 means that the cost of production in the US is close to that in China, while a score closer to 20 indicates a significantly higher cost of production in the US compared to China
- For example, to calculate cost of materials in the US would be to multiply Chinese material costs by a factor of 1.3

(X) Factor from source (X) Factor selected by RB

1) National Renewable Energy Laboratory (sources used of overarching as well as individual production steps); 2) International Energy Agency; 3) European Solar Manufacturing Council; 4) The European Technology and Innovation Platform for Photovoltaics; 5) The factor for Maintenance is calculated using an average of labor and depreciation; 6) Average of production specific NREL factor and scaled overall labor factors of ETIP, and NREL

Source: esmec, ETIP PV, NREL, Euromonitor, iea, Interviews with market participants

II. Overview of policy measures

Overview of potential policy measures to overcome the price premium (1/7)

	Financia	l impact on:			
Policy measure	Gov't	Projects ¹⁾	Description	Advantages	Disadvantages
Tax credits (US IRA ²⁾)			 Tax credits/tax relief is granted to companies manufacturing (parts for) solar panels Comparable effect for solar manufacturers as Opex subsidies Currently applied by the US at 0.07 USD/Wp for modules, 0.04 USD/Wp for cells, 12 USD/m² for wafers and 3.0 USD/kg for polysilicon 	 Can be applied selectively (with different rates) for each production step Provides manufacturers an opportunity to overcome the price premium on the marginal cost as compared to foreign suppliers Often administratively easier to claim than subsidies 	 Can be costly for the gov't to implement (lost tax revenue) Doesn't reduce the risk exposure of solar panel manufacturers when they invest in new facilities (no guaranteed price or offtake)
Import tariff (trade barrier)			 Imposing an additional tax on the import of (parts for) solar panels when they are produced outside the EU or in specific countries The US currently applies a 25-50% duty on solar cells and modules 	 Can be applied selectively (with different rates) for each production step maximizing the effect Inherently, brings a positive cashflow for the gov't which could be used to subsidize production in the EU Can have positive effect on added value domestically by creating jobs and value chain effects 	 Drives up the cost for solar energy project as it requires developers to source more expensive European panels Often perceived as unfriendly by foreign nations and could trigger counter import tariffs (e.g. trade war)

1) Defined as projects using solar panels to generate and sell electricity; 2) Inflation Reduction Act

Overview of potential policy measures to overcome the price premium (2/7)

Policy measure	Financia Gov't	Projects ¹⁾	Description	Advantages	Disadvantages
Opex subsidy	2	\Rightarrow	 Gov't support to manufacturers of (parts for) solar panels for instance in the form of a subsidy per Wp produced or a fixed subsidy per year 	 Can be applied selectively (with different rates) for each production 	 Might be subject to EU state aid regulation
	_			 step Provides manufacturers an opportunity to overcome the price premium on the marginal cost as compared to foreign suppliers 	 Can be costly for the gov't to implement
					 Doesn't reduce the risk exposure of solar panel manufacturers when they invest in new facilities (no guaranteed price or offtake)
					Likely not sufficient as standalone
CBAM (carbon border tax)			 European carbon tax on certain products or parts produced outside the EU but sold within the EU 	 Currently solar PV is excluded from CBAM, in review phase (2027) it should be added 	 Focused only on the CO₂ emissions and hence will never cover the entire price premium
			 Height of tax is based on the amount of CO₂ emissions as a result of the production of the product 	 By design, covers all process steps of the solar panel manufacturing process 	 To the extent solar panel manufacturers in the EU are covered by the ETS the effect on the price premium should be minimal

) Increases cost or decreases revenue 🛛 💊 Decreases cost or increases revenue 🛛 🍚 No/minimal impact on cost or revenue

1) Defined as projects using solar panels to generate and sell electricity

Overview of potential policy measures to overcome the price premium (3/7)

	Financia	l impact on:		_		
Policy measure	Gov't	Projects ¹⁾	Description	Advantages	Disadvantages	
Local content requirement			 Require solar energy project to use (at least) a share of solar panels or sourced in the EU or share of Capex spent within the EU Local content requirements are common in oil & gas (globally) and in offshore wind (e.g. in UK, US, Poland) 	 Relatively simple policy measure which can be easily enforced Does not require any additional payments to/from the gov't, project developers and solar panel manufacturers Could also focus on niches where EU currently has an edge keeping the Chinese manufacturers out, complementary regulations could boost the demand for these niches (o g. EDRD IV) 	 Drives up the cost for solar energy project as it requires developers to source more expensive panels produced in the EU Focused mainly on module production, difficult to enforce earlier process steps Might not achieve its goal when specified as a percentage of Capex as for instance inverters are already produced in the EU 	
				(e.g. EPBD IV)	 Requires sufficient EU production capacity to be available 	
Capex subsidy			 One-off subsidies by the gov't to manufacturers of (parts for) solar panels to stimulate investment in new factories 	 Reduces the risk exposure for investors when investing in new facilities Can be applied selectively (with 	 Might be subject to EU state aid regulation 	
	_				 Can be costly for the gov't to implement 	
				different rates) for each production step	 Doesn't provide manufacturers an opportunity to overcome the price premium on the marginal cost 	
Increases cost or decre	ases revenue	💊 Decreases cos	t or increases revenue 🛛 🕘 No/minimal impo	act on cost or revenue	 Likely not sufficient as standalone 	

1) Defined as projects using solar panels to generate and sell electricity

Overview of potential policy measures to overcome the price premium (4/7)

_ 14	Gov't	Projects ¹⁾	Description	Advantages	Disadvantages
Contract-for-Differenc (2-sided)	e 💋		 Guarantees manufacturers a certain price for their products If the market price is below the set price level the gov't pays the difference to manufacturers and (in a 2-sided form) if the market price is above the set price level the manufacturer pays the difference to the gov't Often used within renewable energy such as the Dutch SDE++ scheme 	 Fixes the price for solar panel manufacturers and hence greatly reduces revenue risk which improves bankability of investments Can be applied selectively (with different rates) for each production step Relatively easy to implement for polysilicon and wafers due to uniformity of the products 	 It might be complicated to set fair, uniform, price levels due to differences in product quality (e.g. efficiency, degradation) Can be costly for the gov't to implement and exact height of the cost can not be determined upfront Requires a form of an auction (and hence heavy administrative process) to award the support So far unproven measure
Traceability of value chain			 Implement measures to improve traceability of raw materials and parts use for solar panel manufacturing for instance by use of block-chain technology The aim is to create an opportunity to market e.g. "forced-labor free" solar panels for which consumers might be willing to pay a premium 	 May allow traceability across the entire supply chain and hence help in enforcement of other incentives Creates additional value for customers and hence willingness to pay more Could be an expansion of CSDD²) and EUFLR³) 	 Additional willingness to pay by consumer is likely insufficient to bridge the cost premium May be complicated to implement in a fraud resilient way Might remain susceptible to loop holes (e.g. missing revers burden of proof)

1) Defined as projects using solar panels to generate and sell electricity 2) Corporate Sustainability Due Diligence (EU regulations); 3) European Forced Labor Regulation

Overview of potential policy measures to overcome the price premium (5/7)

Policy measure	Financia Gov't	l impact on: Projects ¹⁾	Description	Advantages	Disadvantages
Set minimal Module prices			 The EU or EU nations set a fixed minimum price for solar panel modules (components) sold within their territory Measure applies both to Chinese and European solar panels 	 No cost to the government Provides security on minimal selling price, which reduces revenue risk thereby reduces financing cost 	 Could provide additional profits to Chines solar panel manufacturers Increases Capex for solar energy projects
			 Minimum price should be set at or above the European manufacturing cost (after any other support) 		
EUFLR	 European ban on products or parts produced using any form or quantity of forced labor No additional work required as regulations is already being implemented By design, covers all process stere of the solar panel manufacturing process 	regulations is already being implemented	Focused only on forced labor manufactured goods and hence never cover the entire price premium		
				of the solar panel manufacturing	 Requires strict and thorough audits for it to be properly implemented and prevent loopholes

1) Defined as projects using solar panels to generate and sell electricity

Overview of potential policy measures to overcome the price premium (6/7)

•S	Disadvantag		Advantages	Description	act on: Djects ¹⁾		Finan Gov't	- 14
nificant cost to utilized (structural)	 Could impose signature Gould result in u overproduction 	by reduces the	Decreases volume ri revenue risk, thereby financing cost for managements	Government guarantees minimal offtake for Solar panel (or components of) manufactures i.e. if manufactures cannot offload goods to the market		7		Offtake guarantees
cost for consumers c to the solar panel idustry	and business	ments project to use EU luct, to benefit	 Brings in additional in EU/national goverm Encourages solar primanufacture production 	Increase in electricity tax, while exempting EU manufactured renewable energy				•
	• Policy not specif	project to use EU luct, to benefit	Encourages solar produce manufacture produce	renewable energy				with exemptions for EU made ren. Energy

1) Defined as projects using solar panels to generate and sell electricity

Overview of potential policy measures to overcome the price premium (7/7)

Policy measure	Financia Gov't	l impact on: Projects ¹⁾	Description	Advantages	Disadvantages
Government financing	\rightarrow		 Government provides financing for (components of) solar panel manufacturing at discounted market rates 	 Minimal market interference No direct cost to governments Drives down cost of EU made solar panels 	 Limits renewable investment opportunities for the financing market Increase government debt
Made-in-Europe project subsidy			Government provides subsidies to solar projects that utilize (a share of) European made solar panels	 Stimulates both solar projects and subsidizes the manufacturing industry, hence it increases demand and alleviates price pressure from foreign manufactures Also supports REPowerEU, by accelerating the transition to renewable energy sources Proven very effective in USA 	 No control on how subsidies are distributed between project planners and manufacturers Can come at great cost to the government Doesn't directly reduce the risk exposure of solar panel manufacturers when they invest in new facilities (no guaranteed price or offtake) Without sufficiently lenient zoning laws, the number of projects will remain constricted, limiting the effectiveness of the measure
Increases cost or decrease	es revenue	📎 Decreases cos	t or increases revenue 🛛 🍚 No/minimal imp	pact on cost or revenue	

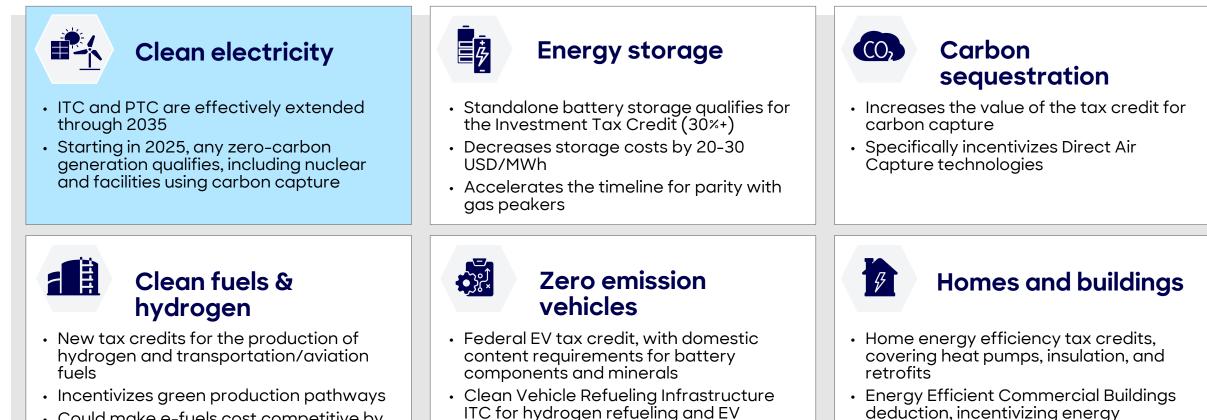
1) Defined as projects using solar panels to generate and sell electricity

III. US Tax credits (IRA)

The energy provisions in the IRA have significant implications for the cost competitiveness of energy storage, hydrogen, and sustainable fuels

Key implications

The IRA results in lower cost renewable energy from wind and solar, which benefits downstream users of clean energy, but also accelerates the need for energy storage and other capacity/reliability solutions


The standalone storage ITC substantially reduces the cost of storage, and increased utility-scale storage deployment will provide capacity and firm renewables, but could also saturate ancillary service markets

Green hydrogen production costs will decline significantly, due to lower cost renewable energy, in addition to a large Production Credit – potentially accelerating the decarbonization of heavy industry and transport

E-fuels could reach parity by the end of the decade – new or expanded credits reduce the cost of renewable power, green hydrogen, and captured CO₂, which are inputs to e-fuels production

The IRA provides a broad set of tax credits that incentivize the deployment of a range of clean energy technologies, at utility-scale as well as for consumers

Key energy sectors impacted

charging

• Could make e-fuels cost competitive by the end of the decade

efficiency projects

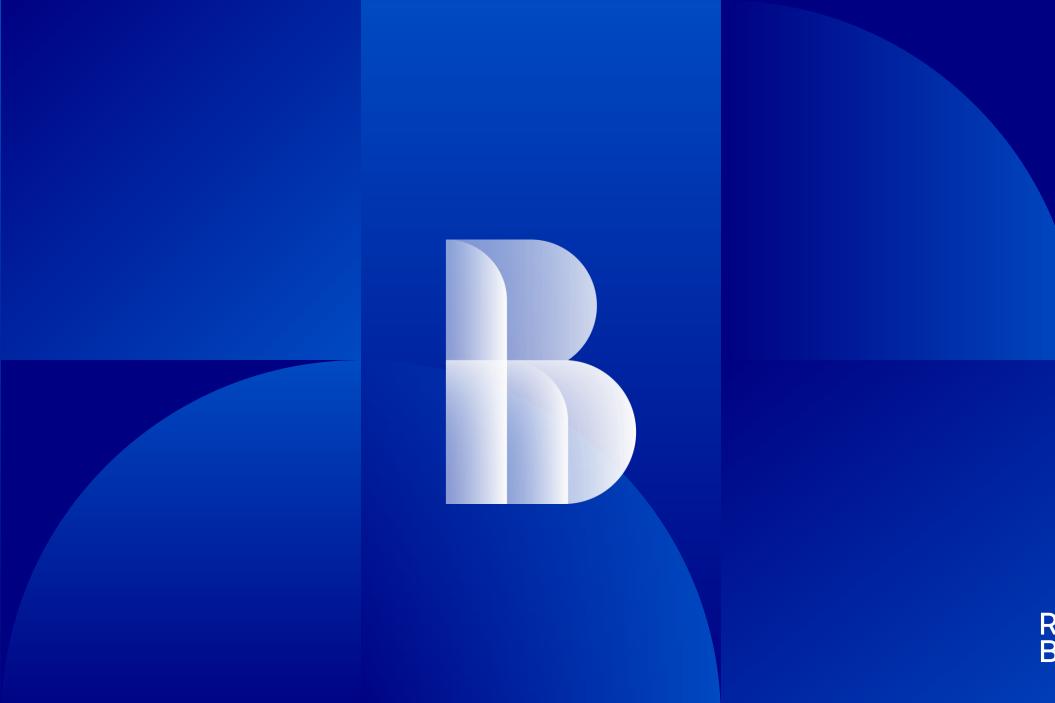
The IRA also aims to support American jobs and communities, by incentivizing domestic manufacturing and the siting of projects in "energy communities"

Provisions benefiting domestic industries and communities

Domestic manufacturing

Advanced Energy Project Credit:

- Up to 30% investment tax credit for new domestic manufacturing facilities
- Covers facilities that manufacture equipment or recycle materials necessary for a range of energy transition sectors
- Advanced Manufacturing Production Credit:
- Production tax credit for domestic manufacturing of clean energy and storage components
- -Substantially subsidizes domestic production of solar and battery storage


Labor and communities

- Prevailing wage and apprenticeship requirements
 - IRA requires developers to pay local prevailing wages to workers, and to employ workers who are in qualified apprenticeship programs
- Bonus provisions for siting projects within "energy communities"
 - Increases the credit value for the ITC, PTC, Hydrogen, CCUS, Clean Fuels, and Advanced Energy Project credits
 - Qualifying locations:
 - Areas with high employment by the fossil fuel industry
 - Former coal plant communities

On top of the PTC/ITC which targets mostly project developers, manufacturing companies like HSM are eligible to tax credits through 45X or 48C

	45X: Advanced Manufacturing	Production Credit	48C: Advanced Energy Project (Credit
Description	 Traditional, uncapped program Production tax credit: Value of credit is specific to eac Credit will remain in effect throug Credit value for each componer 	the end of 2029	 Competitive program - capped at USD 10 bn Investment tax credit: 6% base credit, 30% for projects meeting wage and labor requirements Program size: USD 10 bin, of which USD 4 bn is for projects sited in "Energy communities" 	
Eligible projects & technologies	Solar: • Solar-grade polysilicon 3.0 us • PV wafer 12.00 us • PV cells 0.04 us • PV modules 0.07 us • Blade 20,000 us • Nacelle 50,000 us • Tower 30,000 su • Offshore platform ¹ 20-40,000 us	 Battery modules 10,000 USD/MW Battery modules 10,000 USD/MW Inverters: Residential-scale 65,000 USD/M* Commercial-scale 20,000 USD/M* Utility-scale 15,000 USD/M* Raw materials: 	 Fuel cells Energy storage (and components) Grid modernization equipment CCUS equipment Equipment used for low carbon fuels and chemicals production Energy efficiency hardware xEV vehicles components charging 	Critical minerals and materials (lithium and other energy-related
(ey equirements & stipulations	 Individual credits are "stackable" for in - e.g. an entity that produces cells an Facilities taking the Advanced Energy 	assembles modules earns both credits	 Requires the submission of an application Sponsor has 2 years to provide evidence Once certification is issued, sponsor has 2 	that the project meets requirements

1) USD 20,000/MW for a fixed platform, USD 40,000/MW for a floating platform

